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Abstract—Process mining leverages event logs extracted from
information systems to generate insights into the business processes
of organizations. These insights are enhanced by explicitly
accounting for the frequency of behavior captured in stochastic
process models constructed from event logs. Causal nets are an
elegant declarative process modeling formalism that relies on a
small number of modeling constructs, yet is expressive. In this
paper, we extend this formalism to the stochastic setting, that
is, to allow the extended nets to capture the likelihoods of the
observed process. We also propose a stochastic causal net discovery
approach using Markovian abstraction. Our approach begins with
a standard causal net model generated by a control flow discovery
algorithm, and then employs optimization techniques to determine
optimal binding weights. These weights enable the stochastic
interpretation of the model to closely approximate the Markovian
abstraction of the original event log. Our technique has been
implemented and made publicly available. The evaluation based on
this implementation demonstrates the feasibility of the technique.
Compared to baseline models, the discovered models achieve
noticeable improvements in the quality of stochastic conformance.

Index Terms—Process mining, Stochastic process discovery,
Stochastic causal nets

I. INTRODUCTION

Stochastic process mining specifically focuses on techniques
that incorporate the frequency and probability of different
process behavior. Rather than simply capturing the control-
flow structure, stochastic process discovery constructs process
models that explicitly represent the stochastic nature of the
observed processes. This perspective is crucial for organizations,
because it enables them to differentiate between routine
operations and exceptional cases. Without this capability,
business analysts risk misallocating resources by directing
attention to rare behaviors that have a minimal impact on
overall process performance [10].

Among various modeling formalisms, causal nets (C-nets)
are employed by multiple process discovery techniques, such
as Flexible Heuristic Miner [18] and Fodina Miner [5]. Unlike
other conventional process models, C-nets directly capture the
routing logic through input and output bindings for each activity,
without using model elements such as silent activities, places,
or gateways. However, despite their effectiveness in control-
flow modeling, current C-net discovery techniques do not
reflect the stochastic nature of process behavior. This limitation
undermines their potential for business process improvement,
as the models cannot reproduce the probabilistic characteristics
of the observed processes.

To address this challenge, stochastic process discovery
methods construct process models that associate each trace
with probability, to reflect their expected occurrence in future
process executions. Existing stochastic discovery techniques
first apply a standard algorithm to obtain a control flow model
and then convert it into a stochastic model based on the trace
probabilities of log [7–9]. Although empirical studies have
demonstrated their effectiveness when applied to real-world
event logs, they often disregard partial mismatches between
traces from event log and process model during discovery.

In this paper, we introduce a novel extension by incorporating
a stochastic perspective into the modeling with C-nets. First,
we provide formal semantics for stochastic C-nets, where
probability distributions over traces are determined by the
weights of input and output bindings. Second, given an event
log and a C-net, we apply a Markovian abstraction to account
for local subtrace similarities, which complements existing
techniques by addressing their limitation of treating zero-
probability log traces as entirely incompatible with models.
Then, stochastic discovery is formulated as an optimization
problem, which constructs a stochastic C-net that maximizes
the stochastic conformance measured through the Markovian
abstractions of log and model. Third, we demonstrate the
feasibility of the technique with several real-life event logs.

The paper is organized as follows: and Section II states
preliminaries. In Section III, we introduce stochastic C-nets,
and subsequently present two stochastic discovery algorithms
in Section IV. We evaluate the approach in Section V,
and Section VI discusses related work. Finally, Section VII
concludes the paper.

II. PRELIMINARIES

This section presents several concepts and definitions to
understand the main methods of the paper. Given a set X ,
P(X) denotes the power set of X . Given two sets X1 and X2,
X1\X2 = {x | x ∈ X1∧x /∈ X2} is the set of elements in X1

but not in X2. A multiset is a collection that allows multiple
occurrences of its elements. We specify a multiset M over X
as a function M : X → N that maps the elements in X to
natural numbers (including zero). For example, M = [b4, c5, d]
is a multiset with ten elements: four b’s, five c’s, and one
d. The set of all multisets over X is denoted by B(X). The
union of two multisets M1 and M2 is denoted by M1 ⊎M2.
By M1 F M2, we denote the fact that ∀x∈XM1(x) ≤M2(x).



If M1 F M2, then M3 =M2 \-M1 is the multiset difference,
such that ∀x∈XM3(x) =M2(x)−M1(x).

An event log describes the observed behavior of system,
which is a multiset of traces, where a trace is a finite
sequence of activities. For instance, L = [⟨b, c, e⟩10, ⟨b, d, e⟩10,
⟨b, c, d, e⟩30, ⟨b, d, c, e⟩50] is an event log with 100 traces. We
use the ⊗ operator to concatenate an element to the end of
a sequence, e.g. ⟨b, c, d⟩ ⊗ e = ⟨b, c, d, e⟩. For a vector #»x , xi
denotes the element at the i-th position in the vector.

A. Causal Nets

Process models constructed by heuristic dependency-based
process discovery techniques are often expressed as causal
nets (C-nets) [5]. A C-net is a directed graph in which nodes
represent activities and edges represent causal relations. Each
activity has a set of input bindings and a set of output bindings.

Definition 1 (Causal Nets [1]). Let A be a finite set of activities,
and AS = {Y ⊆ P(A) | Y = {∅} ∨ ∅ ̸∈ Y }. A causal net
is a tuple N = (A,D, I,O, ai, af ), where D ⊆ A×A is the
dependency relation, I ∈ A→ AS defines the set of possible
input bindings per activity, O ∈ A → AS defines the set of
possible output bindings per activity, {ai} = {a ∈ A | I(a) =
{∅}} is the set of initial activities, and {af} = {a ∈ A |
O(a) = {∅}} is the set of final activities.

In a C-net, input and output bindings allow for split and join
behavior similar to those defined in other modeling formalisms.
Fig. 1a presents a C-net mined from L, where A = {b, c, d, e}
is the set of activities, D = {(b, c), (b, d), (c, e), (d, e)} is the
dependency relation, I(b) = {∅}, O(b) = {{c}, {d}, {c, d}},
I(c) = I(d) = {{b}}, O(c) = O(d) = {{e}}, I(e) =
{{c, d}, {c}, {d}}, and O(e) = {∅}. Activity b is the initial
activity, and e is the final activity.

Definition 2 (Activity Bindings). Let C = (A,D, I,O, ai, af )
be a C-net. B = {(a, asI , asO) ∈ A × P(A) × P(A)|asI ∈
I(a) ∧ asO ∈ O(a)} is the set of activity bindings.

An activity binding is a triple (a, asI , asO) that indicates the
occurrence of an activity a with an input binding asI and an
output binding asO. A binding sequence γ∈B∗ is a sequence
of activity bindings, which can be projected to a trace using a
projection function ω : B∗ → A∗. For the example C-net, γ1 =
⟨(b, ∅, {c, d}), (c, {b}, {e}), (d, {b}, {e}), (e, {c, d}, {∅})⟩ is a
possible binding sequence that can be projected to trace
⟨b, c, d, e⟩.

Definition 3 (States). Let N = (A,D, I,O, ai, af ) be a C-net.
S = B(A × A) is the state space of N . A state s ∈ S is a
multi-set of pending obligations. Function ψ ∈ B∗ → S is
defined inductively: ψ(⟨⟩) = [ ] and ψ(σ ⊕ (a, asI , asO)) =
(ψ(σ) \ (asI × {a}))⊎ ({a} × asO) for any binding sequence
σ ⊕ (a, asI , asO) ∈ B∗. ψ(σ) is the state after executing the
binding sequence σ.

A pending obligation of a state is a pair. Initially, there
are no pending obligations, as no output bindings have been
enacted without having corresponding input bindings. By Bs,
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(a) C-net mined from L using “Interactive Data-aware Heuristic
Miner” [14] with default setting.

q0

q1

q2q3

q4q5q6

q7q8

q9

(b, {∅}, {c})(b, {∅
}, {d

})

(b, {∅}, {c, d})

(c, {b
}, {e}

) (d, {b}, {e})
(e, {d}, {∅})(c, {b

}, {e}
)

(e, {d
}, {∅}

) (d, {b}, {e})

(c, {b
}, {e}

)(d, {b}, {e})

(e, {c}, {∅})
(e, {c, d}, {∅})

(e, {c
}, {∅}

)

(e, {c}
, {∅})

(e, {d}, {∅})

(b) In the reachability graph, q0 = [(∅, b)], q1=[(b, c), (b, d)], q2=
[(b, c), (d, e)], q3=[(b, d), (c, e)], q4=[(b, c)], q5=[(c, e), (d, e)], q6=
[(b, d)], q7=[(c, e)], q8=[(d, e)], and q9=[ ].

Fig. 1: A C-net and its reachability graph.

we denote the set of all activity bindings enacted in state
s, that is, ∃σ∈B∗ s.t. s=ψ(σ) Bs = {(a, asI , asO) | asI ×
{a} F ψ(σ)}. Executing an enacted activity binding removes
pending obligations, and introduces new pending obligations.
For instance, the initial state of the C-net shown in Fig. 1a
is s0 = [(∅, b)]. If activity binding (b, ∅, {c}) is executed, we
have ψ(⟨(b, ∅, {c})⟩) = ψ(⟨⟩) \ (∅ × {b}) ⊎ ({b} × {c}) =
[ ]\[ ]⊎[(b, c)] = [(b, c)]. Given Bs for state s, the set of enacted
input bindings is denoted as Is = {asI | ∃(a,asI ,asO)∈Bs

}.
A valid binding sequence models an execution path starting

from the initial state and ending with the removal of all
obligations created during execution. Consider γ1, we have:

ψ(⟨⟩) = [],

ψ(⟨(b, ∅, {c, d})⟩) = [(b, c), (b, d)],

ψ(⟨(b, ∅, {c}), (c, {b}, {e})⟩) = [(c, e), (b, d)],

ψ(⟨(b, ∅, {c}), (c, {b}, {e}), (d, {b}, {e})⟩) = [(c, e), (d, e)], and
ψ(⟨(b, ∅, {c}), (c, {b}, {e}), (d, {b}, {e}), (e, {c, d}, {∅})⟩) = [].

Moreover, a process model is sound if it is free of deadlocks,
livelocks, and other obvious anomalies [2]. In this paper, we
only consider sound C-nets, and the behavior of C-nets is
limited to valid binding sequences. The execution semantics
of a C-net are described by its reachability graph.

Definition 4 (Reachability Graphs). The reachability graph
(RG) of a C-net is a tuple (Q,A, δ, q0, F ) where Q is a finite
set of states, A is a finite set of actions, δ : Q×A→ Q is the
transition function, q0 is the initial state, and F ⊆ Q is the set
of final states.

The reachability graph of a C-net has the following features:
(a) labels are built from activity bindings; (b) states correspond



to states of the C-net that are reachable from the initial state;
(c) the initial state corresponds to the initial state of the C-net;
(d) the final state has no pending obligation. For instance, the
RG of the example C-net is illustrated in Fig. 1b.

B. Stochastic Languages and Stochastic Conformance

Definition 5 (Multiset of k-Trimmed Subtraces). Let A be a
finite set of activities, and σ ∈ A∗ be a trace. The multiset of
k-trimmed subtraces for σ is defined recursively as:

Mk
σ =

{
{σ} if |σ| < k

{σ1→k} ⊎Mk
σ2→|σ| otherwise.

For instance, given a trace σ = ⟨b, c, c, c⟩, it holds that
M2
σ = [⟨b, c⟩, ⟨c, c⟩2], M3

σ = [⟨b, c, c⟩, ⟨c, c, c⟩], and Mk
σ =

[⟨b, c, c, c⟩] for all k ≥ 4.

Definition 6 (Stochastic Languages). Let A be a finite set
of activities and let A∗ be the set of all finite sequences of
activities (traces) over A. Then, a stochastic language l is a
function that maps each trace in A∗ to a probability, that is,
l : A∗ → [0, 1] such that

∑
σ∈A∗ l(σ) = 1.

A stochastic language is an assignment of probabilities to
traces so that the total probabilities sum up to one. It can be
used to encode the relative probability of observing a trace in an
event log or a stochastic process model. Consider event log L,
lL(⟨b, c, e⟩) = 0.1, lL(⟨b, d, e⟩) = 0.1, lL(⟨b, c, d, e⟩) = 0.3,
and lL(⟨b, d, c, e⟩) = 0.5.

A stochastic conformance measure compares the stochastic
languages of an event log and a stochastic process model. In
this paper, we use unit Earth Movers’ stochastic conformance
for stochastic process discovery.

Definition 7 (Unit Earth Movers’ Stochastic Conformance [11]).
Let L be an event log, and N be a stochastic process model.
Their unit Earth Movers’ Stochastic Conformance (uEMSC)
is defined as:

uEMSC(L,N) = 1−
∑
σ∈A∗

max(L(σ)−N(σ), 0).

uEMSC ranges from 0 to 1, where 1 indicates perfect confor-
mance and 0 indicates the worst conformance. Although it can
be computed efficiently in practice, partial trace mismatches
are not considered. Consider two traces of 10 events, even if
they differ only in their end events, uEMSC considers them
to be completely different. However, these two traces can be
classified as almost equivalent and measured with a lower
deviation value. Markovian-based abstraction addresses this
partial matching issue by accounting for subtraces within a
stochastic language.

Definition 8 (K-th-order Stochastic Markovian Abstrac-
tions [16]). Let l be a stochastic language and k ≥ 2. The

k-th-order stochastic Markovian abstraction of l is a stochastic
language mk

l : A∗ → [0, 1] defined as:

mk
l (γ) =

fkl (γ)∑
γ′∈A∗ fkl (γ

′)
, such that: (1)

fkl (γ) =
∑
σ∈A∗

l(σ) ·Mk
σ (γ).

In Eq. (1), fkl represents the expected number of occurrences
of l’s k-trimmed subtraces. The k-th order stochastic Markovian
abstraction mk

l yields a probability distribution over subtraces,
which is the normalization of fkl with the sum of the
occurrences of all k-trimmed subtraces.

For instance, subtrace ⟨b, c⟩ has a presence in traces
⟨b, c, e⟩ and ⟨b, c, d, e⟩ in log L, thus M2

⟨b,c,e⟩(⟨b, c⟩) =

M2
⟨b,c,d,e⟩(⟨b, c⟩) = 1, and the relative frequency of ⟨b, c⟩

is f2L(⟨b, c⟩) = 0.1 ∗ 1 + 0.3 ∗ 1 = 0.4. Consider other
subtraces of length 2 from L, we have f2L(⟨b, d⟩) = 0.1 ∗
1 + 0.5 ∗ 1 = 0.6, f2L(⟨c, d⟩) = 0.3 ∗ 1 = 0.3, fkL(⟨d, c⟩) =
0.5 ∗ 1 = 0.5, f2L(⟨c, e⟩) = 0.1 ∗ 1 + 0.5 ∗ 1 = 0.6,
f2L(⟨d, e⟩) = 0.1 ∗ 1 + 0.3 ∗ 1 = 0.4. For normalization, we
get fsum =

∑
γ′∈A∗ f2L(γ

′) = 0.4 + 0.6 + 0.3 + 0.5 + 0.6 +

0.4 = 2.8, and m2
L(γ) for each γ is derived by dividing

each f2L(γ) with fsum, e.g. m2
L(⟨b, c⟩) = 0.4/2.8 = 1/7.

The 2-th-order stochastic Markovian abstraction for L is
[⟨b, c⟩1/7, ⟨b, d⟩3/14, ⟨c, d⟩3/28, ⟨c, e⟩3/14, ⟨d, c⟩5/28, ⟨d, e⟩1/7].

Definition 9 (Markovian-based Unit Earth Movers’ Con-
formance). Let l and n be two stochastic languages, their
k-th order Markovian-based unit Earth Mover’s Stochastic
Conformance (uEMSCk) is:

uEMSCk(l, n) = 1−
∑
σ∈A∗

max(mk
l (σ)−mk

n(σ), 0).

Given two stochastic languages, uEMSCk compares their
probabilities of subtraces of length k. If k approaches +∞,
uEMSCk approaches uEMSC. In contrast, a smaller k allows
uEMSCk to account for shorter subtraces.

Finally, we introduce the stochastic deterministic finite
automaton to define the semantics of the stochastic C-net
used in the subsequent section.

Definition 10 (Stochastic Deterministic Finite Automaton). A
stochastic deterministic finite automaton (SDFA) is a tuple
(Q,A,E, δ, q0, π) where Q is a set of states, A is a finite
set of actions, E : Q × A → Q is the transition function,
δ : Q × A → [0, 1] is the probability function for transition,
q0 is the initial state and π : Q → [0, 1] is the function
defining the final probability of each state, where ∀q ∈ Q :∑

(l,q′)∈(A×Q) δ(q, l) + π(q) = 1.

An SDFA can be used to define the reachability graph of
the stochastic extended C-nets. By δ(q | γ), we denote the
probability of a sequence of activities γ that starts in state
q ∈ Q. We denote the transition matrix of SDFA as ∆̂, the
probability of visiting every state as column vector #»x , and let
Î be the identity matrix, then it holds that [16]:

(Î − ∆̂⊤) #»x = [1 0 · · · 0]⊤. (2)
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(a) An SC-net, in which all binding weights are assigned a value of 1.
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(b) The stochastic reachability graph of SC-net in Fig. 2a

Fig. 2: An SC-net with uniform weights and its stochastic RG.

III. STOCHASTIC CAUSAL NETS DISCOVERY

In this section, we begin by introducing stochastic C-nets, a
novel formalism for modeling stochastic processes, followed
by a discussion of their execution semantics. Subsequently, we
propose a stochastic discovery technique to extend a C-net with
stochastic information derived from event log. The stochastic
discovery problem is formulated as an optimization problem
that maximizes the uEMSC metric between the Markovian
abstraction of the stochastic C-net and log.

A. Stochastic Causal Nets

Definition 11 (Stochastic Causal Nets). A stochastic causal
net (SC-net) is a tuple (A,D, I,O, ai, af , wi, wo) where
(A,D, I,O, ai, af ) is a C-net, wi : I → R>0 is a weight value
function that maps each input binding in I to a weight value,
and wo : O → R>0 is a weight value function that maps each
output binding in O to a weight value.

SC-net introduces two weight functions for input and output
bindings. We define the binding weights to be positive real
numbers to ensure that they remain eligible for execution. For
instance, the input and output bindings of the SC-net in Fig. 2a
are all assigned a value of one.

Weights define the likelihood that an enacted activity binding
will be executed by establishing a probability distribution over
enacted activity bindings at a given state. This involves two
consecutive decisions: first, which input binding to execute,
and second, which output binding to execute. They together
decide the probability of an enacted activity binding.

Definition 12 (Execution Probability for Input Bindings).
Let Ns = (A, D, I, O, ai, af , wi, wo) be an SC-net. The
probability of executing an input binding is a function that

takes a state s of Ns and asI for activity a:

pNs
(asI | s) =

{ wi(asI)∑
as′

I
∈Is

wi(as′I)
if asI ∈ Is

0 otherwise.

The probability of executing an input binding is the ratio
between its weight and the sum of the weights of all enacted
input bindings. Similarly, at state q1 = [(b, c), (b, d)] for the
example SC-net, the probability of input binding (c,{b}) is
1/1+1+1 = 1/3.

As for an output binding asO ∈ O(a) for activity a, its
probability is defined as:

pNs
(asO) =

wo(asO)∑
as′O∈O(a) wo(as

′
O)
.

Given the activity, the probability of each output binding is
obtained as the ratio between its weight and the sum of the
weights of all output bindings. It involves a local decision
on which output binding to execute. In Fig. 2a, O(b) =
{{c}, {d}, {c, d}} is the set of output bindings for activity
b, we have p(b, [c]) = p(b, [d]) = p(b, [c, d]) = 1/(1+1+1)=1/3.

Then, combining the dual execution probability resulting
from input and output bindings, the execution probability of
an activity binding is defined as follows.

Definition 13 (Execution Probability for Activity Bindings).
Let Ns = (A,D, I,O, ai, af , wi, wo) be an SC-net. The
probability of executing an activity binding b = (a, asI , asO)
at state s, denoted as pNs

(b | s), is defined as:

pNs
(b | s) =

{
pNs(asI | s) · pNs(asO) if b ∈ Bs

0 otherwise.

The probability of a binding sequence γ = ⟨b0, . . . , bn⟩
in Ns is pNs(γ) =

∏
1≤i≤n pNs(bi | si) where si =

ψ(⟨b0, . . . , bi−1⟩). To define the stochastic execution semantics
of an SC-net, we apply Definition 13 to enrich its reachability
graph with a transition probability function.

For instance, Fig. 2b illustrates the stochastic reachability
graph of the example SC-net. The probability of path γ1
is 1/3 · 1 · 1 = 1/3, which indicates that trace ⟨b, c, e⟩
is 1/3. The probability of other binding sequences can be
computed in a similar way, after which the probability
of each trace can be determined. Therefore, the stochastic
language of the example SC-net is [⟨b, c, e⟩1/3, ⟨b, d, e⟩1/3,
⟨b, c, d, e⟩1/36, ⟨b, d, c, e⟩1/36, ⟨b, c, e, d, e⟩1/12, ⟨b, c, d, e, e⟩1/18,
⟨b, d, c, e, e⟩1/18, ⟨b, d, e, c, e⟩1/12], which is notably different
from the stochastic language of the example event log L.

IV. DISCOVERING STOCHASTIC CAUSAL NETS

Given an event log L and a C-net N , we construct an SC-
net Ns using the control flow of N , and Ns is capable of
reproducing the probability of the observed process in L. The
SC-net discovery problem is formalized as follows.

Definition 14 (Discovery of SC-net with Optimized uEMSCk).
Let L be an event log, N be a C-net, and k ∈ N≥2.
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Algorithm 1 SC-net discovery with Markovian abstraction

Require: N = (A,D, I,O, ai, af ) be a C-net, L be an event log,
and k be a user-defined subtrace length.

Ensure: An SC-net Ns that maximizes the uEMSCk with L
1: mk

L ← L ▷ Get stochastic Markovian abstraction from L
2: Ns ← (A,D, I,O, ai, af , wi, wo) ▷ Initialize Ns

3: RGs, ∆̂← Ns ▷ Get stochastic RG and transition matrix
4: #»x ← [10· · ·0] · (Î−∆̂⊤)−1 ▷ Get state probability vector
5: for all γ ∈ A∗ s.t. mk

L(γ) > 0 do
6: fk

Ns
(γ) = 0 ▷ Initialize the frequency for subtrace γ

7: for all xi in #»x do ▷ Iterate all elements in #»x
8: if δ(γ|qi)>0 then ▷ If γ is replayable from qi
9: fk

Ns
(γ) += xi · δ(γ|qi) ▷ Sum γ’s frequency

10: end if
11: end for
12: end for
13: fsum ← 0 ▷ Initialize the frequency sum of all subtraces
14: for all xj in #»x do ▷ Iterate all states in #»x
15: fsum +=

∑
γ′∈A∗ xj · δ(γ′ | q)

16: end for
17: uEMSCk(L,Ns)← 1
18: for all γ ∈ A∗ s.t. fk

Ns
(γ) > 0 do

19: mk
Ns

(γ)← fk
Ns

(γ)/fsum ▷ Normalization with fsum
20: uEMSCk(L,Ns) −= max(mk

L(γ)−mk
Ns

(γ), 0)
21: end for
22: return Ns s.t. uEMSCk(L,Ns)= max

N′
s ∈N

uEMSC(mk
L,m

k
N′

s
)

The stochastic SC-net discovery problem is to find an SC-
net Ns = (A,D, I,O, ai, af , wi, wo) from a set of SC-
nets N = {N ′

s | N ′
s = (A,D, I,O, ai, af , w

′
i, w

′
o)} with

N = (A,D, I,O, ai, af )}, such that:

∀N ′
s∈N uEMSCk(L,Ns) ≥ uEMSCk(L,N ′

s).

Definition 14 specifies that the problem involves finding
an SC-net Ns from a set of candidate models such that Ns
maximizes the stochastic conformance uEMSCk with L. For
instance, Fig. 3 shows an SC-net in which the values of binding
weights are represented as parameters w1, w2, etc. Given
infinitely many possible weight assignments, the goal is to find
one optimal solution to weight parameters, such that uEMSCk

is maximized. This is achieved by transforming stochastic
discovery into an optimization problem built on Markovian
abstraction for log and model, as summarized in Algorithm 1.

Lines 1 to 4 initialize the stochastic discovery problem.
First, we derive the k-th-order Markovian abstraction mk

L

for log L following Definition 8. Lines 2 and 3 establish
a parametrized SC-net using the same control flow as N ,
initialize wi and wo with parametrized weights, then construct
its parametrized stochastic reachability graph. Line 4 derives
the vector #»x representing the probability of reaching each state

by solving the parametrized matrix product defined in Eq. (2).
Subsequently, the loop (lines 5 to 12) leverages #»x to compute
the parametrized frequency of each subtrace in mk

L according
to model, denoted as fkNs

(γ) =
∑
q∈Q xq · δ(γ | q). Line 13

initializes fsum, so that the algorithm iterates over all states to
derive an overall subtrace frequency for normalization (lines 14
to 16). Lines 17 to 21 aggregate the parametrized description
of uEMSCk for event log and model. For every subtrace
γ with mk

L(γ) > 0, we extract a parametrized formula that
describes the probability of γ according to the model. Finally,
the parametrized uEMSCk serves as the objective function
and is maximized in line 22, returning an SC-net that achieves
the maximized uEMSCk.

For instance, for event log L and k = 2, we first construct
2-th-order Markovian abstraction m2

L following Definition 8.
Then, consider SC-nets Ns in Fig. 3, in which the binding
weights with parameters are represented using w1 to w10. The
parametrized stochastic reachability graph of Ns is constructed,
from which its parametrized transition matrix is computed. By
solving the parametrized matrix equation in Eq. (2), the solution
vector #»x of the stochastic reachability graph is constructed,
as shown in Fig. 4. The element in i-th row represents the
parametrized probability of reaching the i-th state of Ns, e.g.,
the probability of visiting q0 is 1, q1 is w2/(w1+w2+w3), etc.

Consider ⟨b, c⟩ from m2
L, we compute its frequency accord-

ing to Ns by replaying ⟨b, c⟩ from each state in the stochastic
reachability graph, and it holds that:

δ(⟨b, c⟩ | qi)=

{
w2·w4

(w1+w2+w3)(w4+w5)
+ w2

(w1+w2+w3)
i = 0

0 i ̸= 0.

The frequency of ⟨b, c⟩ in Ns is f2Ns
(⟨b, c⟩) = x(0) · δ(⟨b, c⟩ |

q0), where x(0) = 1 according to Fig. 4. Thus, f2Ns
(⟨b, c⟩) =

w2·w4

(w1+w2+w3)(w4+w5)
+ w2

(w1+w2+w3)
. Then, m2

Ns
(⟨b, c⟩) is com-

puted by normalizing f2Ns
(⟨b, c⟩) with the sum of all subtrace

frequencies fsum.
Likewise, for other subtraces of length 2 from m2

L, we
compute their parametrized frequency according to model, after
which a normalization is applied to compute their parametrized
probabilities. Finally, we aggregate them and construct an
objective function of uEMSC2(L,Ns), which substitutes each
subtrace probability for m2

Ns
with the parametrized representa-

tion. A solution that maximizes uEMSC2(L,Ns) leads to an
SC-net that satisfies Definition 14.

Stochastic discovery using sampling Alternatively, we pro-
pose a sampling approach to approximate the parametrized
Markovian abstraction of SC-net. We unfold the model using
breadth-first search (BFS) and sample binding sequences up
to a user-defined threshold. During sampling, we track the
probability of each binding sequence. Although BFS-based
sampling inherently favors shorter sequences, this bias aligns
with realistic process behavior, since longer binding sequences
traverse more decision points and are statistically less likely
to occur in reality. After projecting the sampled binding
sequences to a finite sample of traces, their corresponding
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∆ =



0 w2
w1+w2+w3

0 0 w1
w1+w2+w3

0 w3
w1+w2+w3

0 0 0

0 0 w5
w4+w5

w4
w4+w5

0 0 0 0 0 0

0 0 0 0 w10
w4+w10

w4
w4+w10

0 0 0 0

0 0 0 0 0 w5
w5+w8

w8
w5+w8

0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 w8
w8+w9+w10

w10
w8+w9+w10

w9
w8+w9+w10

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0



Input binding Weight

(c,[b]) w4

(d,[b]) w5

(e,[c]) w8

(e,[c,d]) w9

(e,[d]) w10

Output binding Weight

(b,[c]) w1

(b,[c,d]) w2

(b,[d]) w3

#»x =



1

w2
w1+w2+w3

w2w5
(w1+w2+w3)(w4+w5)

w2w4
(w1+w2+w3)(w4+w5)

w1(w10+w4)(w4+w5)+w10w2w5
w1(w10+w4)(w4+w5)+w2w5w10

w2w4w5(1+w10+w5+w8))
(w1+w2+w3)(w10+w4)(w4+w5)(w5+w8)

w2w4w8+w3(w4+w5)(w5+w8)
(w1+w2+w3)(w4+w5)(w5+w8)

w1(w10+w4)(w4+w5)(w5+w8)(w8+w9)+w2w5(w10+w4)(w10+w8)(w5+w8)

w1(w10+w4)(w5+w8)(w10(w4+w5)+w4(w5+w9))+w2
10(w2+w3)(w4+w5)(w5+w8)+(w2+w3)(w4+w5)(w5+w8)(w4w8+w8w9+w5w9)

w2
10(w5+w8)(w4(w2+w3)+w3w5)+w10(w5+w8)((w2+w3)w4(w4+w5)+w3(w5w9+w8w9+w4w8))+(w2+w3)w4(w4+w5)(w5+w8)(w8+w9)

w1(w10+w4)(w5+w8)(w10(w4+w5)+w4(w5+w9))+w2
10(w2+w3)(w4+w5)(w5+w8)+(w2+w3)(w4+w5)(w5+w8)(w4w8+w8w9+w5w9)

1


Fig. 6: The parametrized transition matrix ∆ for stochastic causal net in Fig. 4, and the solution vector x for parametrized state probability.Fig. 4: The solution vector that represents the parametrized probability of visiting each state.

TABLE I: The uEMSCk for event log L and SC-nets.

uEMSCk

SC-net k = 2 k = 3 k ≥ 4

uniform binding weights 0.831 0.604 0.297
optimized binding weights ≈ 1 ≈ 1 ≈ 1

parametrized probabilities according to model are used to
construct a stochastic language.

Subsequently, the parametrized Markovian abstraction of
the model’s stochastic language using Definition 8. Similarly,
we compute the Markovian abstraction for the event log,
where each subtrace is compared against the corresponding
parametrized formula from the model’s Markovian abstraction.
This comparison allows for the construction of the objective
function uEMSCk between the event log and the model. Finally,
stochastic C-net discovery is performed by maximizing the
uEMSCk between the model and log.

Example & Implementation With respect to log L, one
optimal weights assignment for the SC-net in Fig. 3 is
w1 = w3 = 1, w2 = w5 = 8, w4 = 3, w6 = w7 = w9 =
10, w8 = w10 = ϵ where ϵ is a marginal value with ϵ > 0.
Given the weights, the traces that are unobserved in L is still
possible according to models but have a marginal probability.
We present the result of uEMSCk between the event log and
SC-net using uniform weights and optimized weights in Table I.
Compared to SC-net with optimized binding weights, SC-net
that has uniform binding weights of one shows much worse
uEMSCk with respect to the event log.

The proposed Markovian-based optimization and the sam-
pling technique have been implemented and made publicly
available 1. The technique takes a C-net, an event log, and a
user-defined Markovian order as input. The parametrized matrix
equation for Eq. (2) is algebraically solved with the SymPy
library [15]. Then, the objective function for parametrized

1https://github.com/brucelit/stochastic_cn

uEMSCk is constructed, and subsequently a maximized result
is computed with “Basin-hopping Optimizer” from the SciPy
library [17]. The optimizer progresses iteratively by refining
the weights of bindings until convergence, and the algorithm
return an SC-net using the derived weights.

V. EVALUATION

To evaluate the feasibility of the approach, we conduct
experiments with several publicly available event logs.2 For
each event log, we discover one C-net with Flexible Heuristic
Miner (FHM) [18], and the other with Fodina Miner (FM) [5].
We first examine the stochastic quality of the discovered SC-
nets, and then investigate the scalability of the technique. All
experiments were performed on a MacBook Pro with an M2
Pro processor, 32 GB of memory, and macOS Sequoia 15.

A. Stochastic Quality of the SC-nets

We set the target subtrace length to 2 and 3, and perform
stochastic C-net discovery with 2nd and 3rd-order Markovian
abstraction of log and C-net. To establish the baseline, we assign
uniform binding weights to each SC-net. Then, we use the
proposed optimization-based stochastic discovery techniques to
construct SC-net using the input event log and C-net. For the
sampling-based approach, we set the target number of sampled
traces to 100 at maximum. During stochastic discovery, a
10-minute timeout was applied. After constructing the SC-
nets, we perform stochastic conformance with three measures,
including uEMSCk, uEMSC, and Jensen-Shannon stochastic
conformance (JSSC) [12].

The results of the stochastic conformance measures between
the discovered SC-net and log are illustrated in Table II
and Table III. In the table, column Uniform represents SC-nets
with uniform weights, Dis_o represents the approach described
in Algorithm 1, and Dis_s is the sampling-based optimization
approach. The Dis_o technique had a timeout in 2 logs, and
only the sampling-based technique produced SC-nets. This is

2https://www.tf-pm.org/resources/logs

https://www.tf-pm.org/resources/logs


TABLE II: Stochastic conformance of SC-nets discovered with the
2nd-order Markovian abstraction for logs and C-nets.

C-nets mined from FHM C-nets mined from FM

Event log Measure Uniform Dis-o Dis-s Uniform Dis-o Dis-s

Road
uEMSC2 0.751 0.928 0.927 0.535 0.939 0.932
uEMSC 0.611 0.820 0.792 0.189 0.793 0.786
JSSC 0.463 0.637 0.576 0.171 0.657 0.644

Sepsis
uEMSC2 0.345 − 0.387 0.390 − 0.405
uEMSC 0.002 − 0.002 0.033 − 0.041
JSSC 0.003 − 0.001 0.025 − 0.019

BPIC2017
Application

uEMSC2 0.817 0.948 0.935 0.563 0.904 0.889
uEMSC 0.660 0.798 0.821 0.037 0.478 0.473
JSSC 0.593 0.748 0.742 0.042 0.343 0.339

BPIC2020
International

uEMSC2 0.511 − 0.861 0.395 − 0.655
uEMSC 0.107 − 0.385 0.005 − 0.125
JSSC 0.110 − 0.349 0.007 − 0.106

TABLE III: Stochastic conformance of SC-nets discovered with the
3rd-order Markovian abstraction of logs and C-nets.

C-nets mined from FHM C-nets mined from FM

Event log Measure Uniform Dis-o Dis-s Uniform Dis-o Dis-s

Road
uEMSC3 0.625 0.912 0.882 0.302 0.892 0.878
uEMSC 0.611 0.820 0.794 0.189 0.824 0.819
JSSC 0.463 0.591 0.567 0.171 0.684 0.662

Sepsis
uEMSC3 0.237 − 0.273 0.231 − 0.242
uEMSC 0.002 − 0.002 0.033 − 0.036
JSSC 0.003 − 0.002 0.025 − 0.021

BPIC2017
Application

uEMSC3 0.782 0.931 0.923 0.438 0.872 0.866
uEMSC 0.660 0.802 0.820 0.037 0.518 0.502
JSSC 0.593 0.750 0.746 0.042 0.395 0.374

BPIC2020
International

uEMSC3 0.411 − 0.499 0.264 − 0.596
uEMSC 0.107 − 0.214 0.005 − 0.149
JSSC 0.110 − 0.186 0.007 − 0.112

attributed to the large number of states that generate a large,
sparse transition matrix. To derive the vector with parametrized
representations of each state, the technique cannot solve it
efficiently due to the large number of parameters.

For SC-nets derived from the Road and Application logs, the
sampling technique effectively approximates the optimization
technique, as evidenced by the close stochastic conformance
results. However, for the Sepsis log, the stochastic difference
between baseline models and SC-nets discovered through
sampling is relatively marginal. This occurs because the
underlying control-flow model has low fitness, which adversely
affects the stochastic quality of the discovered models.

Overall, compared to SC-nets with uniform weights, the SC-
nets constructed using the proposed approach show a superior
stochastic conformance. In particular, for C-nets mined from
FM, the SC-nets mined from the proposed approach achieve
a significant stochastic conformance improvement compared
to baseline models. Since no other algorithms for discovering
SC-nets exist, we cannot compare our performance directly
against other implementations.

B. Scalability

Our stochastic discovery approach involves a hyperparameter,
the order of Markovian abstraction k, which accounts for
subtraces of length k in both the event log and the SC-net. We
examined the scalability of our technique using values of k
ranging from 2 to 4. During stochastic discovery, we applied a
10-minute timeout, and the sampling-based technique samples
up to 100 traces from the model.

Figure 5 illustrates the run time with optimization- and
sampling-based discovery techniques. For discoverable SC-nets,
the running time increases linearly with respect to the order of
Markovian abstraction due to the growing complexity of the
parameterized objective function. However, the optimization-
based discovery approach failed to construct SC-nets for the
International and Sepsis event logs within the time limit, which
stems from the computational complexity of the parametrized
matrix product. For a C-net of large size, we recommend using
sampling-based technique.

VI. RELATED WORK

Existing stochastic process discovery techniques can be
categorized into two types: single-stage approaches and two-
stage approaches [9]. Single-stage approaches directly con-
struct stochastic process models from event logs. Two-stage
approaches first apply a standard algorithm to obtain a control
flow model and then convert it into a stochastic model based
on the trace probabilities of log.

Toothpaste Miner [7] is a single-stage technique capable of
automatically constructing stochastic models. It applies a set of
reduction and abstraction rules to reduce the size of the model
and generate a probabilistic process tree as an intermediate
output, then a transformation is applied to translate it into a
stochastic labeled Petri net. GASPD [3] is a technique based on
grammatical inference, which discovers a family of stochastic
directed action graphs from an input log.

The two-stage discovery accounts for the stochastic perspec-
tive such that the probability over traces in the discovered
stochastic model resembles that in the event logs. The work
in [6] introduced six weight estimators based on statistics
computed on event log and model. The approach in [9]
optimizes the weights of transitions with respect to Entropic
Relevance and uEMSC. In [8], the authors use a general,
gradient-free function minimization method to maximize the
Earth Movers’ Stochastic Conformance (EMSC) between the
constructed SPN and event log. Moreover, [4] explicitly utilizes
information from the solution of EMSC by computing sub-
gradients.

Compared to existing techniques [4, 8, 9] that transform
stochastic discovery into an optimization problem for stochastic
labeled Petri nets, our work differs in two key respects. First,
our model is based on a stochastic extension of C-nets, a
declarative modeling formalism used by several discovery
algorithms. Second, we perform Markovian-based abstraction
for both event log and model, thus the stochastic discovery
relies on a novel stochastic conformance that accounts for the
relative occurrences of subtraces and partial matches.
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Fig. 5: The running time of the SC-net discovery using Markovian abstractions of orders 2, 3 and 4 for logs and C-nets.

VII. CONCLUSION

C-nets are suitable for process mining given their expres-
siveness without including different additional model elements
such as silent transitions, places, or gateways [2]. In this paper,
we have extended its semantics in stochastic settings to model
not only the control flow of the process but also the probability
distribution over its traces.

Given an event log and a C-net, we proposed a technique
to discover a SC-net with optimized weights of bindings such
that a stochastic conformance measure regarding the event
log is maximized. In particular, the stochastic conformance
measure we employ explicitly considers partial matching of
subtraces, as traces may deviate from the model while still
representing meaningful operational patterns. This approach
complements existing stochastic discovery techniques that treat
any trace with zero probability under the model as entirely
incompatible, thereby including more granular behavior for
stochastic discovery.

For C-nets with large state spaces where direct optimization
is computationally infeasible, we proposed a sampling-based
technique that approximates the model’s stochastic behavior.
Our evaluation also confirms that the discovered SC-nets show
superior stochastic quality compared to baseline models.

Several directions exist for future research. For instance,
one could study the representational bias of stochastic C-net
and identify a mapping from stochastic C-net to stochastic
labeled Petri nets (SLPNs), as existing stochastic process
mining techniques are designed mainly for SLPNs. This
work motivates future research on SC-nets for stochastic
conformance checking [11, 13]. Moreover, one can investigate
other stochastic conformance measures and a single-stage
approach that directly constructs an SC-net from the event
log.
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